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Thanks to Clark Lyons for teaching me that this argument is possible :)

A Recap of the Krein-Milman Theorem

We will discuss only the finite-dimensional case of Krein-Milman, since this is
all we need for the proof of Hall’s matching theorem. Let V be a real vector
space. A subset K ⊆ V is said to be convex if, for all x, y ∈ C and all t ∈ [0, 1],
we have tx + (1 − t)y ∈ K. An element e ∈ K is said to be an extreme point
if, for all x, y ∈ K and t ∈ (0, 1), tx+ (1− t)y = e implies x = y = e. In other
words, an extreme point is a point in K which does not lie strictly between two
other points. Here is an example of a convex subset of R2, with its extreme
points highlighted:

Finally, given any subset S ⊆ V , its convex hull hull(S) is the smallest convex
subset of V which contains S. hull(S) is well-defined because the intersection
of any collection of convex subsets of V is convex, and V is a convex subset of
V which contains S – thus, we may construct hull(S) as the intersection of all
convex subsets of V which contain S.

Theorem (Krein-Milman). Let C be a compact convex subset of Rn. Then C
is equal to the convex hull of its set of extreme points.

It is worth noting that this theorem applies just as well to subsets of any
finite-dimensional real vector space V , by simply choosing any isomorphism
V → Rn. In this case, “compact” means “has compact image in Rn”, and the
choice of isomorphism does not matter because every vector space automorphism
of Rn preserves compact subsets.

Corollary. Let C be a nonempty compact convex subset of Rn. Then C has at
least one extreme point.

Proof. The convex hull of ∅ is ∅.
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Hall’s Matching Theorem

Let G be a finite d-regular bipartite graph, with bipartition {X,Y }. Let E
denote the set of edges in G (which we encode as cardinality-2 subsets of G),
and let ∼ denote the adjacency relation on G. For any S ⊆ G, we let

∂S := {y ∈ G : ∃x ∈ S(x ∼ y)}

denote the set of vertices of G which are adjacent to elements of S. Note that
when S ⊆ X we have ∂S ⊆ Y .

Theorem (Hall). If d > 0 and |∂S| ≥ |S| for all S ⊆ X, then there exists a
perfect matching on G, i.e. a subset of ∼ which is a bijection X → Y .

Proof. Let V := RE denote the R-vector space of functions E → R, which we
note is finite-dimensional. For each f ∈ V , we let f : G → R denote the function

f(x) =
∑
y∈G
x∼y

f({x, y}).

Define
K := {f ∈ [0, 1]E : f = 1}

where 1 denotes the constant function. We note that K is a compact convex
subset of V , and we see that K is nonempty because the constant function 1/d
is an element of K (by the d-regularity of G). By the Krein-Milman theorem,
there exists an extreme point f ∈ K.

Let E′ = {e ∈ E : f(e) /∈ {0, 1}}, and suppose for contradiction that E′ ̸= ∅.
Let H be the subgraph of G spanned by E′, and note that deg(h) ≥ 2 for all
h ∈ H. Thus, H contains some cycle C. Because G is bipartite, C has even
length. Pick a function s : C → {−1, 1} such that s(e) = −s(e′) whenever e
and e′ share a vertex, i.e. s is an alternating choice of sign for each edge in the
cycle C.

Now let ε = 1/2 − max{|f(e) − 1/2| : e ∈ E′}, so that f(e) + ε ≤ 1 and
f(e)− ε ≥ 0 for all e ∈ E′.

Finally, let g+, g− : E → R be the functions

g± = f ± (ε/2)s.

We note that g+, g− ∈ K, and 1
2g+ + 1

2g− = f . We conclude that g+ = g− = f ,
so ε = 0, and thus f(e) ∈ {0, 1} for some e ∈ E, contradicting the definition of
E.

We conclude that E = ∅, and so f is integer-valued. Now

{(x, y) : f({x, y}) = 1}

is a bijection X → Y .
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