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1 Introduction

Let G be a finite group. The Burnside ring A(G) of G is the Grothendieck ring of the category of finite G-sets
(with respect to ⨿ and ×). In other words, A(G) is generated as an abelian group by isomorphism classes of
finite G-sets, subject to the relations [X ⨿ Y ] = [X] + [Y ], and multiplication is given by [X][Y ] = [X]× [Y ]
(extended linearly). For any subgroup H ≤ G, the forgetful functor from G-sets to H-sets admits both
a left adjoint (called induction) and a right adjoint (called coinduction). These three functors then give
rise to operations tr : A(H) → A(G) (called transfer, induced by induction), nm : A(H) → A(G) (called
norm, induced by coinduction), and res : A(G) → A(H) (called restriction, induced by the forgetful functor).
These are the aforementioned “TNR operations”, also sometimes called “Tambara operations”. The most
important things to know about these operations are:

• res is a ring homomorphism (because the forgetful functor preserves both products and coproducts);

• tr is a homomorphism of additive groups (because induction preserves coproducts);

• nm is a homomorphism of multiplicative monoids (because coinduction preserves products).

In this document, I want to record the basic principles for computing (presentations of) Burnside rings
and their TNR operations, a topic I feel is under-discussed in the literature. There will be many details I
gloss over or do not discuss here – the intent is simply to equip the reader with the tools to compute these
things when needed.

2 The Table of Marks

Since every finite G-set decomposes uniquely as a disjoint union of orbits, the Burnside ring A(G) is generated
freely (as an abelian group) by the classes [G/H] where H ranges over the conjugacy classes of subgroups
of G. For each subgroup K ≤ G, we also get a ring homomorphism called the K-mark homomorphism
φK : A(G) → Z, determined by [X] 7→ #XH . The mark homomorphisms for conjugate subgroups are equal.
The most important fact about Burnside rings is that the map

(φK)[K] : A(G) →
∏
[K]

Z

is injective (where [K] ranges over conjugacy classes of subgroups of G). Thus, one can read off a presentation
for the commutative ring A(G) by computing the table of marks, which is the transpose of1 the square matrix
representing this injection with respect to the basis {[G/H] : [H]} for A(G). That is, the columns of the
table of marks are indexed by a chosen ordered set of representatives2 (H1, . . . ,Hk) of the conjugacy classes
of G, and the rows are then indexed by the integral basis ([G/H1], . . . , [G/Hk]) for A(G). The (i, j)-entry of
the table of marks is thus #(G/Hi)

Hj .
You can compute a table of marks with GAP via Display(TableOfMarks(G)); where G is the group in

question.

1Why the transpose?? I use this convention because GAP does.
2By convention, the total order is always chosen to refine the order of the subgroups. This guarantees that the table of

marks is lower-triangular and the first column is non-increasing.
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Example 1. Let G = Cp. The table of marks is

# e Cp

Cp/e p 0
Cp/Cp 1 1

The class [Cp/Cp] is the unit in A(Cp), of course. The class [Cp/e] is traditionally denoted t, and we see
from the table of marks that t2 = pt holds in A(Cp). We conclude that

A(Cp) ∼= Z[t]/(t2 − pt).

Example 2. Let G = Cp2 . The table of marks is

# e Cp Cp2

Cp2/e p2 0 0
Cp2/Cp p p 0
Cp2/Cp2 1 1 1

Let’s set t = [Cp2/Cp] and u = [Cp2/e]. We see that u2 = p2u, t2 = pt, and tu = pu. We conclude that

A(Cp2) ∼= Z[t, u]/(u2 − p2u, t2 − pt, tu− pu).

Example 3. Let G = S3. The table of marks is

# e C2 C3 S3

S3/e 6 0 0 0
S3/C2 3 1 0 0
S3/C3 2 0 2 0
S3/S3 1 1 1 1

Let’s set x6 = [S3/e], x3 = [S3/C2], and x2 = [S3/C3] (the subscripts correspond to the cardinalities of the
S3-sets). We get

x2
6 = 6x6

x2
3 = x6 + x3

x2
2 = 2x2

x6x3 = 3x6

x6x2 = 2x6

x3x2 = x6

The last equation allows us to eliminate x6 as a generator, and the relations become

x2
3x

2
2 = 6x3x2

x2
3 = x3x2 + x3

x2
2 = 2x2

x2
3x2 = 3x3x2

x3x
2
2 = 2x3x2

Now note that the second and third equations make the the rest redundant! So we have simply

A(S3) ∼= Z[x3, x2]/(x
2
3 − x3x2 − x3, x

2
2 − 2x2).

Example 4. Let G = Cpq. The table of marks is

# e Cp Cq Cpq

Cpq/e pq 0 0 0
Cpq/Cp q q 0 0
Cpq/Cq p 0 p 0
Cpq/Cpq 1 1 1 1
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We see immediately that [Cpq/e] = [Cpq/Cp][Cpq/Cq]. So, A(Cpq) is generated by xq := [Cpq/Cp] and
xp := [Cpq/Cq]. The relations are

x2
q = qxq

x2
p = pxp

and so we get
A(Cpq) ∼= Z[xq, xp](x

2
q − qxq, x

2
p − pxp).

It may seem suspicious that A(Cpq) ∼= A(Cp)⊗A(Cq), and it is!

Proposition 1. Let G1 and G2 be finite groups of relatively prime order. Then A(G1×G2) ∼= A(G1)⊗A(G2).

Proof. This follows from the fact that every subgroup of G1 ×G2 is of the form H1 ×H2.

Example 5. Let G = Cp × Cp. It helps to think of G as the vector space F2
p, so that its (conjugacy classes

of) subgroups are just its subspaces. Then we easily see that there are p+ 3 conjugacy classes of subgroups
(the trivial subspace, p + 1 lines, and the whole space). Let L0, . . . , Lp denote the lines. To compute the
table of marks, we use the following observation: when K is not subconjugate to H, #(G/H)K = 0. Then
we see easily that the table of marks looks like:

# e L0 L1 . . . Lp G
G/e p2 0 0 . . . 0 0
G/L0 p p 0 . . . 0 0
G/L1 p 0 p . . . 0 0

...
. . .

G/Lp p 0 0 . . . p 0
G/G 1 1 1 . . . 1 1

and thus we have
A(Cp × Cp) ∼= Z[v, ℓ0, . . . , ℓp]/(ℓ2i − pℓi, ℓiℓj − v : i ̸= j).

The generator v is redundant but makes the presentation easier to read.

3 Computing Restriction, Transfer, and Norm Maps

Let G be a finite group, and let H be a subgroup of G. The functions

resGH : A(G) → A(H)

trGH : A(H) → A(G)

nmG
H : A(H) → A(G)

all have straightforward descriptions – they are induced by canonical functors between the categories G−set
and H−set.

3.1 Restriction

resGH is a ring homomorphism induced by the forgetful functor G−set → H−set. In particular, this means
that

φK resGH [G/L] = φK [G/L]

for all subgroups K ≤ H. This makes resGH very easy to compute!
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Example 6. Let’s compute the restriction A(S3) → A(C3). Recall that

A(S3) ∼= Z[x3, x2]/(x
2
3 − x3x2 − x3, x

2
2 − 2x2)

and
A(C3) ∼= Z[t]/(t2 − 3t),

Here are the tables of marks, with rows labelled according to our presentations for the Burnside rings, and
columns highlighted to indicate the subgroup inclusion C3 → S3.

e C3

t 3 0
1 1

e C2 C3 S3

6 0 0 0
x3 3 1 0 0
x2 2 0 2 0

1 1 1 1

We see from this that resS3

C3
(x3) has mark (3, 0), and thus resS3

C3
(x3) = t. Likewise, resS3

C3
(x2) = 2. Since

resS3

C3
is a ring homomorphism, this is all we need to know!

3.2 Transfer

trGH is an abelian group homomorphism induced by the induction functor H−set → G−set. Induction sends
H/K to G/K, which makes things very easy. On the other hand, trGH is usually not a ring homomorphism.
However, trGH(resGH(a)b) = a trGH(b) (i.e. trGH is A(G)-linear), which often helps.

Example 7. Let’s compute the transfer A(C3) → A(S3). Here are the tables of marks again, now with the
rows highlighted to indicate the subgroup inclusion C3 → S3.

[C3/e] = res(x3) = t 3 0
[C3/C3] = res(1) = 1 1 1

[S3/e] 6 0 0 0
[S3/C2] = x3 3 1 0 0
[S3/C3] = x2 2 0 2 0

[S3/S3] 1 1 1 1

So, for a, b ∈ Z, we get trS3

C3
(a+ bt) = ax2 + bx3x2.

3.2.1 Norm

nmG
H is a homomorphism of multiplicative monoids3 induced by the coinduction functor H−set → G−set.

Coinduction sends an H-set X to MapH(G,X), where we view G as an H set via left multiplication, and G
acts on this set of functions by precomposition with right multiplication.

Since nmG
H is not additive and the multiplicative monoid of A(H) is never finitely generated, it tends to

be annoying to find explicit formulae for nmG
H . However, there is one nice thing we can spot directly:

MapH(G,X)K = {f : G → X | ∀h ∈ H∀g ∈ G∀k ∈ K(f(hgk) = hf(g))}

In other words, MapH(G,X)K is the set of H-equivariant maps G → X which are constant on left K-cosets.
For example, we have #MapH(G,X)G = #XH . It’s often possible to use this to compute the mark of
nmG

H([X]).
To extend to arbitrary elements of A(H) (i.e. virtual isomorphism classes of H-sets), we need to use

either a Mazur sum formula [1] or Tambara’s original construction.
Other useful tools I know of:

1. Thinking really hard;

2. The double-coset formula for resGH ◦nmG
H .

3also satisfying nm(0) = 0
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Example 8. Let’s compute the norm A(C3) → A(S3). The good news is that a Mazur sum formula is not
too bad here, because [S3 : C3] = 2. We have nm(a + b) = nm(a) + nm(b) + tr(ab), where b denotes the
(unique) nontrivial Weyl conjugate of b. Here the Weyl action on A(C3) is trivial, because every subgroup
of C3 is normal in S3. Thus, we have

nm(a+ b) = nm(a) + nm(b) + tr(ab).

Next, we compute nm(k) for k a natural number. This is the class of the S3-set MapC3
(S3, (C3/C3)

⨿k).
Any C3-equivariant map S3 → (C3/C3)

⨿k is constant on left C3-cosets, so is fixed by the action of C3 on
MapC3

(S3, (C3/C3)
⨿k). Thus, MapC3

(S3, (C3/C3)
⨿k) has only orbits of types S3/C3 and S3/S3. An orbit of

type S3/S3 corresponds to a constant function, and there are k of these. There are k2-many C3-equivariant
functions in total, so

nm(k) = k +
k2 − k

2
x2.

Of course, this ought to be the formula for all integers k, positive or negative. To see this, we compute

0 = nm(0) = nm((−k) + k) = nm(−k) + nm(k) + tr(−k2) = nm(−k) + k +
k2 − k

2
x2 − k2x2

which gives

nm(−k) = −k + (k2 − k2 − k

2
)x2 = −k +

k2 + k

2
x2 = (−k) +

(−k)2 + (−k)

2
x2,

as desired.
Next, we compute nm(t) directly. This is the class of the S3-set MapC3

(S3, C3/e). We see directly that
this is an S3-set of cardinality 9 with no C3-fixed points, so it must be [S3/e] + [S3/C2] = x3x2 + x3.

Now using our Mazur sum formula again, we get an explicit formula for nmS3

C3
. Letting a, b ∈ Z, we have:

nmS3

C3
(a+ bt) = nmS3

C3
(a) + nmS3

C3
(bt) + trS3

C3
(abt) = a+

a2 − a

2
x2 +

(
b+

b2 − b

2
x2

)
(x3x2 + x3) + abx3x2

= a+
a2 − a

2
x2 + bx3 + (ab+

3b2 − b

2
)x3x2 .

Bingo!
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