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1 Introduction

Let G be a finite group. The Burnside ring A(G) of G is the Grothendieck ring of the category of finite G-sets
(with respect to IT and x). In other words, A(G) is generated as an abelian group by isomorphism classes of
finite G-sets, subject to the relations [X II'Y] = [X] 4 [Y], and multiplication is given by [X][Y] = [X] x [Y]
(extended linearly). For any subgroup H < @G, the forgetful functor from G-sets to H-sets admits both
a left adjoint (called induction) and a right adjoint (called coinduction). These three functors then give
rise to operations tr : A(H) — A(G) (called transfer, induced by induction), nm : A(H) — A(G) (called
norm, induced by coinduction), and res : A(G) — A(H) (called restriction, induced by the forgetful functor).
These are the aforementioned “TNR operations”, also sometimes called “Tambara operations”. The most
important things to know about these operations are:

e res is a ring homomorphism (because the forgetful functor preserves both products and coproducts);
e tr is a homomorphism of additive groups (because induction preserves coproducts);
e nm is a homomorphism of multiplicative monoids (because coinduction preserves products).

In this document, I want to record the basic principles for computing (presentations of) Burnside rings
and their TNR operations, a topic I feel is under-discussed in the literature. There will be many details 1
gloss over or do not discuss here — the intent is simply to equip the reader with the tools to compute these
things when needed.

2 The Table of Marks

Since every finite G-set decomposes uniquely as a disjoint union of orbits, the Burnside ring A(G) is generated
freely (as an abelian group) by the classes [G/H| where H ranges over the conjugacy classes of subgroups
of G. For each subgroup K < G, we also get a ring homomorphism called the K-mark homomorphism
¢r : A(G) — 7Z, determined by [X] ~ #X . The mark homomorphisms for conjugate subgroups are equal.
The most important fact about Burnside rings is that the map

(px) k) + A(G) = HZ
(K]

is injective (where [K] ranges over conjugacy classes of subgroups of G). Thus, one can read off a presentation
for the commutative ring A(G) by computing the table of marks, which is the transpose of! the square matrix
representing this injection with respect to the basis {[{G/H] : [H]} for A(G). That is, the columns of the
table of marks are indexed by a chosen ordered set of representatives® (Hy, ..., Hy) of the conjugacy classes
of G, and the rows are then indexed by the integral basis ([G/H1l,...,[G/Hy]) for A(G). The (i, j)-entry of
the table of marks is thus #(G/H;)™.

You can compute a table of marks with GAP via Display(TableOfMarks(G)); where G is the group in
question.

1Why the transpose?? I use this convention because GAP does.
2By convention, the total order is always chosen to refine the order of the subgroups. This guarantees that the table of
marks is lower-triangular and the first column is non-increasing.



Ezample 1. Let G = C),. The table of marks is

e Cp
p 0
1 1

#
Cple
Cp/Cyp

The class [C},/Cp] is the unit in A(C),), of course. The class [Cp/e] is traditionally denoted ¢, and we see
from the table of marks that ¢* = pt holds in A(C,). We conclude that

A(Cy) = ZIE)/(t* — pt).
Ezample 2. Let G = Cp2. The table of marks is

# ‘ € Cp sz
Cple [p> 0 0
Cpr/Cp | P 0
Cpo/Cp |1 1 1

Let’s set t = [Cp2/Cp] and u = [C)2 /e]. We see that u? = p?u, t? = pt, and tu = pu. We conclude that
A(C2) 2 Z[t,u]/(u* — p*u,t* — pt,tu — pu).

Example 3. Let G = S5. The table of marks is

# |e Gy C3 S5
S3fe |6 0 0 O
S/Co|3 1 0 0
Ss/C5 12 0 2 0
S3/Ss |1 1 1 1
Let’s set w6 = [S3/€], 3 = [S3/Cs)], and x3 = [S3/C3] (the subscripts correspond to the cardinalities of the

Ss-sets). We get
IZ = b6xg

2
T3 = Tg+ X3

T2 = 21y
T3 = 3I6
Ty = 2$6
T3T2 = Te

The last equation allows us to eliminate x4 as a generator, and the relations become
x%ajg = 6x322
:E% = XT3%2 + I3
T2 = 2xy
xgaﬁg = 31372
xgxg = 22319
Now note that the second and third equations make the the rest redundant! So we have simply
A(S3) & Z[ws, 0] /(23 — 2329 — T3, 75 — 213).

Ezample 4. Let G = Cpq. The table of marks is

i e Gy Cf Cp
Cpe/e |pg 0 0 0
Cpg/Cp | @ q O 0
Cpoe/Cq |l P 0O p O
Coo/Cpq | 1 1 1 1



We see immediately that [Cpe/e] = [Cpq/Cpl[Cpq/Cyql. So, A(Cyy) is generated by z,
xp = [Cpq/Cy]. The relations are

8
Il
L}
8
)

8
=R
Il
]
=
3

and so we get

A(Cpq) = Z[xq’xp](xg — q%q, 33127 — pTp).

It may seem suspicious that A(Cpq) = A(C)p) @ A(Cy), and it is!

i= [Cpq/Cp] and

Proposition 1. Let Gy and G4 be finite groups of relatively prime order. Then A(G1xG2) =2 A(G1)RA(G2).

Proof. This follows from the fact that every subgroup of G; x G is of the form H; x Ho.

O

Ezample 5. Let G = C,, x C,. It helps to think of G as the vector space F2, so that its (conjugacy classes

P’

of) subgroups are just its subspaces. Then we easily see that there are p + 3 conjugacy classes of subgroups

(the trivial subspace, p + 1 lines, and the whole space). Let Lo, ..., L, denote the lines.

To compute the

table of marks, we use the following observation: when K is not subconjugate to H, #(G/H)® = 0. Then

we see easily that the table of marks looks like:

# e Lo Ll Lp G
Gle |p> 0 0 0 0
G/Lo|p p O 0 0
G/Ly|p 0 p 0 0
G/L,|p 0 0 p 0
G/G|1 1 1 1 1

and thus we have
A(Cy x Cp) 2 Z[v, L, .. L)) (02 — pli, by —v i # §).

The generator v is redundant but makes the presentation easier to read.

3 Computing Restriction, Transfer, and Norm Maps
Let G be a finite group, and let H be a subgroup of G. The functions
res 1 A(G) — A(H)
trG : A(H) — A(G)
nm& : A(H) — A(G)

all have straightforward descriptions — they are induced by canonical functors between the categories G—set

and H —set.

3.1 Restriction
G

resy; is a ring homomorphism induced by the forgetful functor G—set = H—set. In particular, this means

that
YK TGSE[G/L] = @K[G/L]

for all subgroups K < H. This makes resg very easy to compute!



Ezample 6. Let’s compute the restriction A(S3) — A(Cs). Recall that
A(S3) = Z]xs, x2)/ (23 — 2320 — 3,25 — 213)

and
A(C3) = Z[t]/ (£ - 3t),

Here are the tables of marks, with rows labelled according to our presentations for the Burnside rings, and
columns highlighted to indicate the subgroup inclusion C3 — Sj3.

‘ € 02 Cg 53

e Cs 6 0 0 O
t13 0 zz |3 1 0 O
1 1 z2 12 0 2 0

1 1 1 1

We see from this that resg‘; (z3) has mark (3,0), and thus resgz (x3) = t. Likewise, resgfj‘; (x2) = 2. Since

resg&f; is a ring homomorphism, this is all we need to know!

3.2 Transfer

trfl is an abelian group homomorphism induced by the induction functor H—set — G—set. Induction sends
H/K to G/K, which makes things very easy. On the other hand, tr$ is usually not a ring homomorphism.
However, tr§ (res$ (a)b) = atr§(b) (ie. tr§ is A(G)-linear), which often helps.

Ezample 7. Let’s compute the transfer A(C3) — A(S3). Here are the tables of marks again, now with the
rows highlighted to indicate the subgroup inclusion Cs5 — Ss.

(S5 /€] 6 0 00
[C5/e] =res(zs) =t |3 0 [S5/Ca) =233 1 0 0
[03/03} = res(l) =11 1 [53/03} = T2 2 0 2 0
[Ss/Ss] |1 1 1 1

So, for a,b € Z, we get trgz (a+ bt) = axs + brss.

3.2.1 Norm

nmg is a homomorphism of multiplicative monoids® induced by the coinduction functor H—set — G—set.

Coinduction sends an H-set X to Mapy (G, X), where we view G as an H set via left multiplication, and G
acts on this set of functions by precomposition with right multiplication.
Since nm$ is not additive and the multiplicative monoid of A(H) is never finitely generated, it tends to

be annoying to find explicit formulae for nm%. However, there is one nice thing we can spot directly:
Map (G, X)X ={f: G — X |Vh € HVg € GVk € K(f(hgk) = hf(g))}

In other words, Map (G, X)X is the set of H-equivariant maps G' — X which are constant on left K-cosets.
For example, we have # Map (G, X)¢ = #XH. It’s often possible to use this to compute the mark of
G(X
um§ ([X]).
To extend to arbitrary elements of A(H) (i.e. virtual isomorphism classes of H-sets), we need to use
either a Mazur sum formula [I] or Tambara’s original construction.
Other useful tools I know of:

1. Thinking really hard;

2. The double-coset formula for res o nm§.

3also satisfying nm(0) = 0



Ezample 8. Let’s compute the norm A(C5) — A(S3). The good news is that a Mazur sum formula is not
too bad here, because [S3 : C3] = 2. We have nm(a + b) = nm(a) + nm(b) + tr(ab), where b denotes the
(unique) nontrivial Weyl conjugate of b. Here the Weyl action on A(C3) is trivial, because every subgroup
of C3 is normal in S3. Thus, we have

nm(a + b) = nm(a) + nm(db) + tr(ad).

Next, we compute nm(k) for k a natural number. This is the class of the S3-set Map, (93, (C3/C3)"*).
Any Cs-equivariant map S3 — (Cs/ Cg)uk is constant on left Cs-cosets, so is fixed by the action of C'5 on
Mapc, (Ss, (C3/C3)1k). Thus, Mapc, (Ss, (C3/C3)%) has only orbits of types S3/C3 and S3/S3. An orbit of
type S3/S3 corresponds to a constant function, and there are k of these. There are k%-many Csz-equivariant

functions in total, so
k2 —k
nm(k) =k +

Z9.

Of course, this ought to be the formula for all integers k, positive or negative. To see this, we compute

2

0 = nm(0) = nm((—k) + k) = nm(—k) + nm(k) + tr(—%*) = nm(—k) + k + Ty — k2o

which gives

s K-k k*+k (k)2 + (=k)

nm(—k) = -k + (k 5 Yoo = —k + 5 %2 = (k) +

as desired.

Next, we compute nm(t) directly. This is the class of the S3-set Mapc, (S3,C3/e). We see directly that
this is an S3-set of cardinality 9 with no Cs-fixed points, so it must be [S3/¢e] + [S3/C2] = x3xe + 3.

Now using our Mazur sum formula again, we get an explicit formula for nmg?; . Letting a, b € Z, we have:

nmg? (a + bt) = nmg? (a) +nm? (bt) + tre? (abt) = a + o= Lt (b + “- x2> (232 4 x3) + abxswy
—|a+ GQQ_%Q T bas + (ab+ 25 |
Bingo!
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